经济名词——统计性歧视理论
来源: | 作者:pmo38f1ec | 发布时间: 2018-05-11 | 1337 次浏览 | 分享到:
统计性歧视理论(Theory of Statistical Discrimination)

个人认为,统计性歧视理论即是一种部分代替整体的概念,统计理论下即使是普查也会因为统计因素,统计人员的主观判断等各种因素而使得统计结果偏重于群体共性而弱化群体个性,如此便会造成对于群体内部不同性向的少数人而产生的歧视。

1972年,美国学者菲尔普斯在《美国经济评论》正式提出统计性歧视理论,建立模型来解释统计性歧视问题。统计性歧视是将一个群体的典型特征看作该群体中每一个个体所具有的特征,并利用这个群体的典型特征作为雇佣标准而产生的歧视。 
统计性歧视理论认为,统计性歧视的根据在于信息的不完全,以及获取信息需要支付成本,企业在劳动力市场上雇佣时,往往将求职者的群体特征推断为个体特征,这种做法会使不利群体遭受统计性歧视。 
如果不利群体额总体统计性特征中,个体差异越大,那么利用群体特征来推断作为甄选标准的代价就越高。但是对于企业来说,这仍是不完全信息下的高效率的做法,与雇主利润最大化目标是一致的。

阐释:
一个常见的例子是国家机构或企业筛选人员的依据是他们所上的大学。雇主可能发现从更好的学校毕业的人均生产率比较高;而且,由于各校评分标准不同,很难对各校学生的学习成绩进行评估和比较。因此,雇主更多地是根据他们毕业的学校而非成绩或实力来选择雇员。但如果进行一种更为细致的筛选就会发现,不太有名的学校的毕业生中也有许多优秀的工作者。这个例子中说明了基于学校平均质量的统计性歧视。
统计性歧视能够强化人们的成见,并能减弱某一群体中成员提高技能和积累经验的激励,所以它会导致经济的无效率。
可以分析一下一个上了一所不太有名的大学的普通学生的情况,他知道很大程度上雇主将根据其学校的质量或者是某一方面的技能(比如说英语)对她进行判断,而专业、学习成绩、所学课程难易程度、真正学到的东西、工作经验以及应聘岗位的核心要素都可能被忽视。结果,在面临统计性歧视时,个人会减少投资于那些提高专业知识含量、提高劳动技能、使自己成为更专业的雇员的活动(比如说职业技术水平认证)。
当统计性歧视涉及到固定群体、性别、民族、种族时,其危害更大。如果大多数雇主凭借社会某些现象所表现的负面影响而否定那一类人全体的素质,那么,那些有才能的个体不仅会被当作平均水平的工人对待,甚至莫名被排斥在某些工作领域之外,而且长此以往,他们自身也没有热情去提高他们的知识和技能水平。
统计性歧视在很多方面都可以看到,大多数国家普遍都存在这一现象。例如:传统上妇女被排除在工程师等数学能力要求较高的职业之外,结果妇女在报考学校核择业时容易倾向于人文社会科学,这个个结果反过来又会强化人们认为妇女对工程不感兴趣的成见。
统计性歧视不仅能将个人的群体特征类型化,而且还能减弱个人对教育和培训进行投资的激励,从而反过来又强化关于原有群体特征的成见。
歧视的偏好:无论厂商还是顾客都有一种“歧视的偏好”,或许在美国有些管理者就是不喜欢雇佣黑人;在一些国家有些销售人员就是有偏见,不想把货品卖给特定的人群,批评者认为最好是同义反复,说白了就是:“事情之所以这样,是因为人们想让它这样。”这种偏好在排斥性歧视现象中十分明显。

评价:
这种歧视的原因是由于统计方法不科学或者是由于信息不完全造成的。 
通常,雇主总是希望雇佣生产率最高的员工。实际上,雇主在有限的招聘时间里不太可能完全掌握员工的实际劳动生产率是多少,只能利用员工的个人一些与生产率有关的特征加以判断。例如雇主会收集一系列有关求职者的信息,包括年龄、教育、经验等。雇主还可能会采取一些筛选方法,如笔试、面试或者心里测试来补充一些信息。在这种情况下,雇主在进行雇佣决策的过程中,会不知不觉地融进一些特征判断来决定最终雇佣谁。利用求职者的性别、种族、教育背景或年龄因素来判断其劳动生产率水平以及劳动能力决定雇佣取舍就是统计性歧视。 
但也有学者指出,随着相关人口群体内部的不可衡量的差别的越来越大,性别或其他区域群体信息被使用的可能性就会越来越小,统计性歧视也就会随之而逐步消失。